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Abstract—The Ritz method with algebraic polynomial displacement functions is used to solve the
vibration problem for laminated composite plates having different boundary conditions. Natural
frequencies and mode shapes for plates having two adjacent free edges and the remaining edges
either simply supported, clamped or free are presented. Convergence studies are made which
demonstrate that accurate results are obtained by using 64 displacement terms for symmetrically-
laminated plates. The effects of various parameters (material, fiber orientation and boundary
conditions) upon the natural frequencies and mode shapes are studied.

[. INTRODUCTION

Laminated composite structures are becoming increasingly important in many engineering
applications. The nced for more information on the behavior of laminated structural
components, like plates, is clear. Rectangular plates arc used in many engincering appli-
cations.

The literature on the title problem is vast. A scries of publications (Leissa, 1978,
1981, 1987) listed hundreds of publications on the subject. Many of the previous studies
concentrate on the theory of the subject, obtaining natural frequencics only for those
problems which permit exact solutions (Jones, 1973 ; Lin, 1974). Exact Navicr-type solutions
are possible for cross-ply plates having shear diaphragm boundaries (Jones, 1973) and
antisymmetric angle-ply plates having a certain type of simple-support boundaries (S3).
Exact Levy-type solutions are also possible for cross-ply laminates having two opposite
shear diaphragm edges and for antisymmetric angle-ply laminates having two opposite S3
boundarics (Lin and King, 1979). Limited references are available on the study of the effects
of many parameters like the material orthotropic characteristics, the number of layers, the
lamination angle and boundary conditions on the natural frequencies and mode shapes of
composite plates (Leissa and Narita, 1989).

Simply-supported, symmetrically-laminated plates were recently studied (Leissa and
Narita, 1989). The first eight natural frequencies and mode shapes were obtained. The Ritz
method with trigonometric functions was used and reasonably accurate and comprehensive
results were obtained. Symmetrically-luminated cantilevered plates were also analyzed in
another study (Jensen er al., 1982 ; Jensen and Crawley, 1984). Experimental and analytical
natural frequencies and mode shapes were obtained. The finite element and the Ritz methods
with beam and plate functions were used. Completely-free, symmetrically-laminated plates
were recently analyzed (Sivakumaran, 1987). Frequencies obtained by using the finite
element method and those obtained by using the Ritz method with algebraic polynomials
were compared with experimental results.

A complete and mathematically-consistent set of equations, including equations of
motion, boundary conditions and energy functionals, was presented recently for shallow
shells and can be easily specialized for plates (Qatu, 1989; Leissa and Qatu, 1991). It is
shown there that the energy functionals derived are consistent with the equations of motion
and boundary conditions, and therefore can be used with energy approaches such as the
Ritz method. These equations were successfully applied to obtain the natural frequencies
of laminated cantilevered and completely free plates and shallow shells (Qatu, 1989 ; Qatu
and Leissa, 1991a, b). The Ritz method with algebraic polynomials was used.
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The main objective of this study is to present a procedure for solving the vibration
problem of composite plates with various boundary conditions. This procedure is based on
the Ritz method and uses algebraic polynomials. Among the other objectives of this paper
is to present the first known, reasonably-accurate, natural frequencies and mode shapes of
laminated plates with certain boundary conditions and to study the effects of many par-
ameters like the lamination angle and orthotropy ratio on the natural frequencies and mode
shapes of these plates.

2. ANALYSIS

The Ritz method may be used to solve the free vibration problem. This utilizes the
strain energy and kinetic energy functionals for laminated plates. The strain energy stored
in the plate during elastic deformation may be written in terms of the middle surface
displacements u and v in directions tangential to the middle surface and parallel to the x:-
and y:z-planes, respectively, and the normal displacement w (see Fig. 1). The strain energy
is (Qatu, 1989 ; Leissa and Qatu, 1991):
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where the 4, B, and D, arc the conventional laminate stiffness cocflicients (Vinson and
Sicrakowski, 1986).
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Fig. |. Non-dimensional coordinates for a CSFF plate.
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The above energy functional may be expressed in terms of middle surface strains and
curvature changes which are related to the middle surface displacements by

_ QE _ v _ v Ou
RIS 8’_6y’ ?"'—6x+6y
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h,——g;f. "y=“b7v T=—2m~ (2
The total kinetic energy is
p 2y a2 a2
T=EJJ{“0+U0+”'0} dxdy 3)

where p is the average mass density of the composite plate per unit volume.
For free vibrations of a shallow shell having the rectangular planform shown in Fig.
1. displacements are assumed as:

u(x,y,t) = U(x, y) sin !t
v(x,y. t) = V(x,y) sin wt
w(x,y, 1) = W(x, () sin wt. )
Algebraic trial functions will be used in the analysis because first, they do form a
complete set of functions, which guarantees convergence to the exact solution as the number
of terms taken increases and, second, onc can straightforwardly solve for many boundary
conditions using algebraic trial functions.

The displacement functions U, ¥ and W can be written in terms of the non-dimensional
coordinates £ and 5 as:
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where & = x/fa—&, and n = y/b—n, and &,, n, are defined in Fig. 1.

Keeping in mind that the Ritz method requires satisfaction of geometric (forced)
boundary conditions only, with suitable selection of the values &,, 10, fo, jo, Ko, lo, Mo and ng
one can solve for many boundary conditions with the same analytical procedure. Vibration
problems for laminated plates having the boundary conditions XXFF, where X can be
simply supported (S), clamped (C), or free (F), can be solved. One should keep in mind
that for generally-laminated plates there are four types of boundary conditions for each of
the S, F and C edge conditions (as described in Table 1).

Table 1 shows the combinations of iy, ko, and m, that should be used in the x-direction
to get each of the possible boundary conditions at x = 0. Similar types of boundary
conditions can be obtained at y = 0 by suitable selection of jo, I and ng. This will enable
one to solve for six boundary conditions of isotropic, orthotropic or anisotropic laminated
plates, namely, FFFF, SFFF, SSFF, CFFF, CSFF and CCFF. It will also enable one to
solve for 78 combinations of boundary conditions of unsymmetrically-laminated plates.

For solving the free vibration problem, eqns (4) and (5) are substituted into eqn (1)
in order to get an expression for the maximum strain energy (Un.,) and into (3) in order
to get an expression for the maximum kinetic energy (7 na)-
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Table 1. Values of i,, k¥, and m, needed to get
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The Ritz method requires minimization of the functional (T — Unae) with respect to
the coeflicient a,;. fi; and y,,, which can be accomplished by setting :
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which yields a total of (J—iy+ D)X (J=fo+ D+ (K=ko+ D x{(L=L+ D+ (M —-m,+ 1)
x (N—ny+ 1) simultancous, lincar, homogencous equations in an equal number of
unknowns a,,, fi,; and 7,,. Those equations can be described by :

(K-Q°M) a=0 (7

where K and M arc the stiffness and mass matrices, respectively: Q is the frequency
parameter, and a is the vector of unknown coefficients %, fi,; and 7,,,.

The determinant of the coefficient matrix is set equal to zero which will yield a set of
cigenvalues. Substituting each eigenvalue back into eqns (5) yiclds the corresponding
eigenvector (amplitude ratio) in the usual manner. The mode shape corresponding to each
frequency can be determined by substituting the eigenvector back into eqns (5).

It has been noted that the convergence characteristics and possible matrix ill-
conditioning can be improved if one uses the non-dimensional coordinates such that they
form planes of symmetry. This can be done for the completely free, SSFF and cantilever
plates. For that reason, &, = n, = 1/2 are used for completely free boundaries, where
two lines of symmetry are observed, &, = 0 and 5, = 1/2 are used for SFFF and CFFF
boundaries, where one line of symmetry is observed, and &, = 4 = 0 are used for SSFF,
CSFF and CCFF boundary conditions. For the SSFF and CCFF plates, there exists a
diagonal line of symmetry which cannot be accounted for easily with the present
polynomials. It should also be mentioned that the symmetry is preserved only for isotropic
or orthotropic rectangular plates, and is lost for generally anisotropic plates.

For symmetrically laminated plates all of the stretching-bending coupling (i.e. B, = 0)
terms vanish. This leads to decoupling the in-plane displacements from the out-of-plane
displacements. The possible combination of boundary conditions which can be solved by
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Table 2. Values of m, and n, for
various boundary conditions at
x=0andy=0

B.C, m, n,

FFFF
SFFF
CFFF
SSFF
CSFF
CCFF

[S SRR~
B o 0D

the present method reduces to six as was mentioned earlier. Only the last equations of the
sets of eqns (4). (5) and (6) are needed for the transverse vibrations. This leads to a system
of linear, homogeneous equations of the order (M —mq+ 1) x (N—ny+1). Table 2 gives
the required values of m1, and n, for each of the six combinations of boundary conditions.

Comparisons among results from the present method and analytical and experimental
data obtained by Jensen er al. (1982) for laminated cantilever plates may be found in the
dissertation by Qatu (1989) and the work accomplished by Qatu and Leissa (1991a). There,
the natural frequencies obtained experimentally, and those obtained by using the finite
clement method, are compared with those obtained by the present method. Different
lamination and aspect ratios for plates having eight plies are included in those studies. It
was concluded that the present method yiclds a closer upper bound to the exact solution
than the finite clement results, and is reasonably close to the frequencies obtained exper-
imentally, The Ritz method with algebraic polynomials yiclded closer upper bounds to
the exact solutions than the Ritz method with certain beam and plate functions. Other
comparisons were made with the experimental and analytical results for completely-free
plates given by Sivakumaran (1987). These comparisons can be found in the work by Qatu
(1989 and Qutu and Leissa (1991b).

3. CONVERGENCE STUDIES

Convergence studies are made for composite plates representative of those to be
analyzed subsequently. These include symmetric luminates of three-layers, with stacking
sequence [0/ —6/0]. The angle 0 lics between the fibers and the projection of the x-axis
upon the plate. Filamentary composite materials of two types were considered, namely E-
glass/epoxy (E/E) and graphite/epoxy (G/E). The following material properties were used :

E-glass/cpoxy: E, = 60.7GPa, £, =248GPa, G, =120GPa, v,; =023 (8)
Graphite/epoxy : E, =138GPa, E,=896GPa, G,; =7.1GPa, v;»=030. (9

The ubove properties were taken from Vinson and Sierakowski (1986).

A typical plate of square planform (a/b = 1) is used. Convergence studies of the lowest
eight frequency parameters Q = wa?./p/E h* for E-glass/epoxy plates having the six
boundary conditions which will subsequently be analyzed can be found in Table 3, and
those for graphite/epoxy can be found in Table 4.

For both materials considered here and for each of the six boundary conditions, three
solutions are presented. These solutions are obtained by using 36, 49 and 64 terms for the
first, second and third solutions, respectively. Equal numbers of terms are taken in each of
the in-plane directions.

Convergence is observed to be reasonably good for engineering applications. The
maximum difference between the 49- and the 64-term solutions is less than 3% for all the
cases. The set of boundary conditions with the poorest convergence is the completely free
one. As geometric constraints are imposed on the boundaries, convergence seems to improve
and the fastest convergence is observed for the plate with two adjacent clamped edges (i.e.
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Table 3. Convergence of the frequency parameter Q for E-glass epoxy square plates

Deter.
B.C. size Q
36 31565  4.2313 59894 7.4964 90989 12754 14610 16.146
FFFF 49 31548 4.1999 59283 7.3904 89624 12.735 14.157 16.119
64 3.1547  4.1999 59282 7.3898  8.9459  12.368 14.038 15.654
36 1.5929  3.8429 53387 64864 11.245 12.795 13.513 15.820
SFFF 49 1.5928  3.8418  5.2989 6.4644  11.069 12.643 13.484 15.620
64 1.5928  3.8417 52989  6.4633 11.051 12640  13.153 15.527
36 08672 21074  5.3240 59287 7760 12,572 14.029 15.508
CFFF 49 0.8668  2.1071 5.3094 5.8832  7.7558 12.388 14.012 15.492
64 0.8667  2.1065  5.3090 5.8827  7.7529 12.309 14.691 15.486
36 0.7815  3.6549  4.9662 8.6598 11.047 13.644 15.694 19.037
SSFF 49 0.7814  3.6549  4.9657 8.6509 10.940 13.507 15.561 18.808
64 0.7802  3.6547  4.9650 8.6506 10938 13.503 15.553 18.763
36 1.3857 4.1729 6.4700 9.8837 11.536 [6.318 17.209  21.144
CSFF 49 1.3856  4.1724  6.4690 9.8563 11.450 16.285 17.111 21.002
64 1.3855  4.1721 6.4688 9.8553 11.448 16.279 17.092  20.875
36 1.7348  5.2632 67900 11.029 13.428 16.634 18.612  22.145
CCFF 49 1.7345  5.2618  6.7894  11.025 13.427 16.629 18.591 22.070
64 1.7345 52606  6.7893 11.024 13.422 16.622 18.584  22.055

CCFF plates). The maximum difference in the natural frequencies between the 49- and 64-
term solutions for CCFF boundary conditions is 0.07% for E/E matertal and 0.14% for
G/E materials.

Interestingly enough, plates with FFFF and SFFF boundaries converge faster with
G/E material than do those with E/E material. While the difference between the 49- and
64-term solutions is 2.97% for E/E plates with completely free boundaries, it is 2.52% for
G/E material with the same boundarics. This phenomenon is reversed for SSFF, CSFF and
CCFF boundary conditions, where plates with the E/E material converge faster than those
with G/E.

From the above studies, it may be considered that the 64-term solution for the plates
presents satisfactory convergence for engineering applications. Therefore, 64 terms will be
used in the subsequent analysis.

Table 4. Convergence of the frequency parameter Q for graphite/epoxy square plates

Deter.
B.C. size Q
36 1.6262  2.0910 3.7748  5.1285  5.1924 7.4462 79743  9.5453
FFFF 49 1.6203  2.0789  3.7177  5.0570  5.1460 7.2263  7.8735 9.1564
64 1.6202 2.0784  3.7115  5.0517  5.0707 7.0800 7.6870  8.9317
36 0.9171 25554 32899  4.5599  5.8347 7.7369  9.4071 11792
SFFF 49 09166  2.5371 32786  4.5284  5.7501 7.6644 92225 11.255
64 09165 2.5363  3.2754 45181 5.6929 7.5070  9.0844 11.085
36 0.6519 1.4392  3.1581 41996 5.6674 6.7157  8.8263 11.058
CFFF 49 0.6513 1.4377  3.1253  4.1881 5.6427 6.6344  8.7529 10.809
64 0.6507 1.4372 3.1228 41839 56111 6.5257 8.6460 10.557
36 0.467! 1.8437  3.9371 4.6707  6.8341 8.2414 10919 12.747
SSFF 49 0.4656 1.8248 39276 4.6559 6.7644 8.1051 10.690 12.395
64 0.4644 1.8424 39263  4.6541 6.7514 8.0780 10.540 12.236
36 1.0615 24227 50125 56484  7.949] 9.3699 12.325 14.282
CSFF 49 1.0606 2.4211 49812 56388  7.9011 9.1566 12.059 13.991
64 1.0600 24205 49791 56343  7.8767 9.0771  11.881 13.713
36 1.2913  3.0535 55559 6.2780  8.5898  10.367 13.459 14.936
CCFF 49 1.2912  3.0518 55534  6.2730 8.5715 10.241 12990 14.570

64 1.2907  3.0495 55463  6.2691  8.5507 10.236 12970  4.551
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4. NATURAL FREQUENCIES

Tables 5 and 6 show the lowest eight natural frequencies for E-glass/epoxy and gra-
phite‘epoxy materials, respectively. The aspect ratio (a/b) is chosen to be one indicating
square plates. Three-layer [0, —0, 6] laminates are used. The lamination angle is varied
from 0° to 90° with an increment of 15°. For FFFF, SSFF and CCFF square plates,
symmetry about the line £ = 5 exists. This results in the frequencies for plates with the fiber
angles 6 = 607, 75° and 90° being the same as those with the fiber angles 8 = 30°, 15° and
0°, respectively.

It is noticed that increasing the fiber angle 8 from 0° to 45° increases the lowest two
non-dimensional frequencies (Q = wb>./p/E, h*) for plates with geometric symmetry about
the ¢ = n line (i.e. FFFF, SSFF and CCFF plates). From the symmetry of the problems,
increasing the fiber angle from 45° to 90° decreases these frequencies. This indicates that
the maximum fundamental frequencies are obtained with the fiber angle equal to 45° for
these boundary conditions. For that angle. the fibers are parallel to the line of geometric
symmetry. This observation is true for both materials considered. The effect of the ortho-
tropy ratio is clearer for the second lowest frequency than it is for the first one. Increasing
the fiber angle from 0° to 45° increases the second lowest frequency by 3.4% for E/E
material and by 37% for G/E material when the boundary conditions are completely free.
Similar observations are true for the other two boundary conditions (i.e. SSFF and CCFF).
Mode interaction occurred for the remaining frequencies, but generally maximum fre-
quencices occurred at the fiber angle of 45°.

For plates with the line of geometric symmetry n = 0 (i.e. SFFF and CFFF plates) the

Table 5. Frequency parameters Q for E-glass/cpoxy three-layer laminated square plates (for FFFF, SSFF and
CCFF plates, natural frequencies when € = 607, 757, 90" are the same as those when ¢ = 307, 15°, 0" ; respectively)

4

B.C. (degrees) Q

0 29262 41227 65314 72219 87320 (1504 14213 14419

— Is 30017 41372 63438 72706 88321 11668 (3997 15039
30 31547 41999  S0282 73898 89459 12368 14038 15654

a5 32313 42632 S68SS 74614 89581 13492 14104 14142

0 14555 44373 51290 62830 10836 12276  14.548  16.209

Is 14976 42707 51724 63346 10904 12525 13977 15967

30 15928 38417 52989 64633 1105l 12640 13.053  15.527

SFFF 15 16635 33478 S4441  6.6407 11004 11311 13574 15620
60 16254 30074 54827 68479 9.9399 11252 13.174  16.651

75 15013 28772 53530  7.0382 94089 11245 12346  17.821

9% 14352 28530 52546 71236  9.2927 11400 11755 18487

0 10236 20136 53729 64406 7.9911 12304 12475  17.967

s 09744 20504 54406 61873 791390 12240 12886  17.206

30 08667 21065 53090 58827 77529 12309 13691 15486

CFFF as 07616 20948 47185 60341 7.5938 12.354 (3622  14.64
60 06918 19842 42966 62131 74326 12110 12439  14.855

75 0.6606 18442 41217 62977 73019 11.588 12245  14.130

9 06535 17820 40846 62929 72698 11460 12229  13.707

0 07315 3.6039 50009 85594 99717 14938 15190  18.463

SSFF 15 0.7401  3.6028 50260  B8.5892 10.244 14439 15411  18.604
30 0.7802 36547 49650 86506 10938  13.503 15553  18.763

as 0.8037 36822 49280 86762 11.578 12743 15592  [8.831

0 13561 39471 68464 99789 10283 16377 18.356  20.187

15 14004 40222 68104 98754 10741  16.522 17940  20.518

30 13855 41721 64688  9.8553 11448 16279 17.092 20875

CSFF as 13068 43256 60220 97944 12358 14814  17.035  20.528
60 12010 44680 56384  9.6604 12940 13960 16990  20.005

75 11195 45901 53820 9.4987 12342 14687 16906  19.443

90 10973 46999 51871  9.4193 12076 15066 16878  19.082

0 16104 50077 69752 10854 12259  18.008  18.440  22.040

(s 16874 50856 70032 10945 12600 16133 18411 22141

CCFF 30 17345 52606 67893 11024 13422 16622 18.584 22,055

45 1.8894 53681 6.6448 11056  14.257 15.567 18.683  22.007
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Table 6. Frequency parameters © for graphite/epoxy three-layer laminated square plates (for FFFF, SSFF and
CCFF plates, natural frequencies when 8 = 60 , 75", 90 are the same as those when 8§ = 307, 15, 07 ; respectively)

¢
B.C. (degrees) Q
0 1.4910  1.6461 34596  4.5393  6.4266  6.4713  7.1317  9.0088
FFFF 15 1.5234  1.7881  3.5251 47418 57179  6.8856  7.0915  9.0493
30 1.6202  2.0784 37115 50517  5.0707 7.0800 7.6870 8.9317
45 1.6894 22397 38250 4.6812 51973 72344 B.6974  B8.7855
0 0.7557 22394 44609 49322 51321 6.6056  9.3875 10.037
15 0.8137 23310 4.0594 4.7834  5.3088 6.9328 9.0394 1L.112
30 09165 25363 3.2754 45181  5.6929 7.5070  9.0844 11.085
SFFF 45 09658 21919 29238 4.4457 59173 7.8414  8.1340 10.141
60 0.9394  1.5457 29198 44215 57122 6.3606  8.1236  9.6680
75 0.8292  1.2078  2.7242 39013  5.3423 6.4229  7.8634  8.6512
90 0.7273 L1346 25179 36786 5.2306  6.6385  7.6832  7.9838
0 1.0175  1.3724  2.6393 53147 63757 6.8348  8.2455 10.217
15 0.8717 1.4068 28246 54370 56820 65568 8.3479 10.l64
30 0.6507  1.4372  3.1228 4.1839  5.6l11 6.5257 8.6460 10.557
CFFF 45 0.4607  [.3705 28443 34746 52594  6.8772 8.8024  9.1567
60 0.3318 11769 20749 34072  5.1498 6.4767 6.9401  B8.8053
75 02722 09389 1.7073 31105 4.7761 59184 66539  8.4337
90 02590  0.8622  1.6226  2.9232  4.5432 59732  6.6701  B.1971
0 0.3727  1.6061  4.1112 46015 57303 8.0595  8.1514 11.884
SSEF 15 0.3989  1.6843 40683 46146  6.1091 7.7262  9.4298 11.746
30 0.4644 18424 39263 4.6541 67514 8.0780 10.540  12.236
45 0.4952 19058 38166 4.7579  7.1091 8.6320 10.068  12.175
0 L1148 2.0413 43747 64907 7.4584 8.2761  9.6074 13.130
15 11585 2.2363  4.6158  6.2858  7.6601 8.4972 10505  [3.167
30 10600 24205 49791 56343  7.8767  9.077t 10943  [3.713
CSFF 45 08805  2.5250  4.6162  5.5318 82007  9.5954 11.294 13477
60 0.6957 24199 43151 53569  7.6067 8.9992 11434 12989
75 0.5619 2.1540 4.4806 5.0735 6.5309 8.5485 10.491 12.587
90 05147 20392 4.6243 49370  5.9837 8.6892 93056 12.852
0 L1788 2.4126 51548 65157  7.6703 94441 10134 14.028
CCFF 13 12801 26719 54359 63716 7.9964 9.5520 11.298  14.115
30 1.2907  3.0495  5.5463  6.2691  8.5507 10.236 12970 14.551
45 1.2935  3.2985 51583  6.5741  9.2614 10843 12232 14723

behavior is different. For cantilever plates, it is observed that increasing the fiber orientation
angle from 0° to 90° decreases the fundamental frequency, which corresponds to the first
bending mode. This effect is larger for the material with the higher orthotropy ratio (i.c.
G/E). Increasing the fiber angle from 0° to 90° decreases the lowest natural frequency by
75% for G/E materials and only by 35% for E/E materials. For the second-lowest frequency,
which corresponds to the first twisting mode, the maximum natural frequency is obtained
when the fiber angle is 30°. The difference between the maximum second frequency (at the
fiber angle 0 = 30”) and the minimum one (at the fiber angle 8 = 0°) is considerably larger
for the plates with higher orthotropy ratio (i.e. G/E material). For SFFF plates, increasing
the fiber orientation increases the fundamental frequency for the fiber angles from 0° to 45°
and decreases afterwards. This indicates that the fundamental frequency for SFFF plates
should be corresponding to the first twisting mode, which is what Fig. 2 shows. This
observation is true for both materials, and is stronger for the G/E plates.

For CSFF plates, the geometric symmetry is lost and the fundamental frequency is
observed to be maximum when the fiber angle is 15° for E/E materials and is 0° for G/E
materials. This is closer to the 0° fiber angle than the 90° one because the clamped boundary
condition imposes stronger constraints than does the simple-support boundary condition.

5. MODE SHAPES

Contour plots for different boundary conditions and the material with the higher
orthotropy ratio (i.e. G/E) are given in Figs 2-6. Mode shapes for § = 0°, 15°, 30°, 45° are
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Fig. 2. Mode shapes for completely-free laminated graphite/epoxy plates.

shown for completely-free, SSFF and CCFF plates. For these boundary conditions, mode
shapes for 0 = 60°, 75" and 90” are similar to those given for 0 = 307, 15° and 0”, respectively,
and can be casily obtained by changing the coordinates. Heavier lines in the sketches are
node lines (i.c. lines of zero displacements). The absolute maximum displacement in the
mode shapes is normalized to one. The displacement between the contour lines is one fifth
of the maximum displacement. The first six mode shapes are given.

For the completely-free boundary condition, one should note that four possible sym-
metry classes exist in the displacement functions chosen. For example, one can choose
m=n=0,2,4,... for the doubly-symmetric (i.e. symmetric about both the £ and 5 axcs)
modes. Similar choices can be made for the other three symmetry classes. These symmetry
classes about the £ and n axes exist for the isotropic and cross-ply plates. This symmetry is
lost for plates with angle-ply lamination and one should keep all the terms in the
polynomials. For the special case of diagonally-orthotropic angle-ply laminates which are
made of 45” angle layers, the symmetry classes exist about the diagonals (Fig. 2). The
gradual change in contour lines with increasing 0 is evident.

For plates with SFFF and CFFF boundaries, only two classes of symmetry are possible
in the displacement functions (i.e. the displacement functions can be either symmetric or
antisymmetric about the -axis). Figures 3 and 4 give the first six mode shapes for these
plates. For example, to obtain the symmetric modes one should choose n =0, 2, 4,....
This symmetry/antisymmetry in the mode shapes can be seen for isotropic and cross-ply
laminated plates. For angle-ply plates, the symmetry classes are lost and one should keep
all the terms in the analysis. One should keep in mind that one zero frequency exists for
SFFF plates which corresponds to the rigid-body mode. For SFFF plates with 8 = 0 and
the fibers are parallel to the x-axis, the second mode shape is the first symmetric model with
two nodal parallel to the x-axis. The equivalent to this mode when 8 = 90° (i.e. the fibers
are perpendicular to the x-axis) is the fifth mode and the actual second mode has one nodal
line in the direction of the fibers. Similar observations are made for the cantilever plates.
This shows that for certain mode shapes, more nodal lines tend to appear parallel to the
direction of the fibers.

Plates having CSFF boundary conditions do not permit any symmetry or antisymmetry
in the mode shapes. The mode shapes tend to be similar to those obtained for plates with
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CCFF and SSFF boundary conditions, with curve crossing being replaced by curve veering
in most of the cases. For all laminates, the first mode is the double bending mode. The
sccond mode has onc nodal line in the &-direction for 6 = 0 and one nodal linc in the -
direction for 0 = 90", For laminates with other lamination angles, the second mode has one
nodal linc making an angle with the ¢-axis almost the same as the lamination angle. This
shows that the previously-mentioned observation of more nodal lines tend to appear in the
direction of the fibers is also evident for this boundary condition.

For SSFF and CCFF plates, the mode shapes are very similar, and only those of the
CCFF plate are given in Fig. 6. For these boundary conditions, symmetry about the
diagonal & = nexists only for isotropic and diagonally-orthotropic plates with layers making
a 45 angle with the E-axis. For these laminates, mode shapes can be either symmetric or
antisymmetric about the diagonal ¢ = n. The gradual change in contour plots as the angle
0 increases is evident.

6. CONCLUDING REMARKS

The Ritz method can straightforwardly be applied to investigate the vibrational charac-
teristics of laminated plates with various edge conditions. [t gives reasonably accurate
results with fewer degrees of freedom than some other method like the finite element
method.

It is observed that the maximum two fundamental frequencies occur at the fiber angle
0 of 45 for plates with geometric symmetry about the ¢ = n diagonal line (i.e. FFFF, SSFF
and CCFF plates). For plates for which the line of geometric symmetry is = 0 (i.e. SFFF
and CFFF plates) the behavior is different. For cantilever plates, it is observed that
increasing the fiber orientation angle from 0° to 90° decreases the fundamental frequency,
which corresponds to the first bending mode. For SFFF plates, the maximum fundamental
frequency (which corresponds to the first twisting mode) occurs at the fiber angles of 45°.

Possible symmetry classes of the mode shapes has been shown. For completely-free
plates, four symmetry classes have been distinguished. Symmetry classes are observed about
the coordinates for cross-ply laminates and about the diagonals for 457 angie-ply laminates.
Two classes of symmetry about the # = 0 axis are observed for cross-ply laminates with
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SFFF and CFFF boundaries. Two classes of symmetry about the diagonal & = n are
observed for SSFF and CCFF plates with 45 angle-ply lamination. As expected, no
symmetry has been found in the mode shapes of CSFF plates.

It has been noticed that more nodal lines tend to appear in the direction of the fibers
for certain mode shapes and boundary conditions. A gradual change in the nodal lines as
# increases has been shown.

Acknowledgement—The author thanks Professor Arthur W. Leissa of the Ohio State University for reviewing the
paper and giving valuable suggestions.
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